Artificial Insemination in Smallholder Farming: An Exploration of Farmer Perspectives and Determinants in Beitbridge, Zimbabwe

Bruce Tavirimirwa⁶, Grace Tambo⁷, Tendai Dominic Matekenya⁸, Givious Sisito⁹, Andrew Chamisa¹⁰, Irene Chakoma¹¹, Sikhulile Siziba¹², Soul Washaya¹³, Xavier Zhakata¹⁴, and Never Assan¹⁵

Abstract

This study investigated the perceptions of communal farmers in Beitbridge, Zimbabwe, regarding the adoption of artificial insemination (AI) technology in cattle breeding. A semi-structured questionnaire was administered to 80 cattle farmers who had participated in the Zimbabwe Resilient Building Fund Government Communal Cattle Insemination program between 2017 and 2021. The results revealed that 99% of the farmers did not regularly utilize AI services due to the absence of locally based AI service providers (97.5%), discontinuation of service between government programs, and insufficient knowledge of AI technology (72%). Uncontrolled breeding systems and poor seasonal nutrition were identified as major challenges by 100% and 80% of the farmers, respectively. The majority of farmers (77.5%) preferred using both AI and natural mating if available. The perceived low adoption of AI in communal areas was attributed to a shortage of locally based inseminators, inadequate farmer awareness of assisted reproductive technologies (ARTs), and the absence of structured communal breeding programs. The study recommends collaboration among cattle stakeholders to address the challenges in optimizing cattle productivity through ART implementation and adoption in rural areas, including enhancing the capacity of government workers and lead farmers, decentralizing service providers, and institutionalizing community-led sustainability frameworks. Alternative methods of

-

⁶Corresponding Author: Matopos Research Institute, Bulawayo. Email : btavirimirwa@gmail.com

⁷ Grace Tambo, Livestock Researcher specialising in animal breeding and production.

⁸ Tendai Dominic Matekenya, Agricultural Scientist, Matopos Research Institute, Department of Research and Specialist Services (DR&SS), Bulawayo.

⁹ Givious Sisito, Chief Research Officer and Biometrician, Matopos Research Station, Department of Agricultural, Research, Innovation and Specialist Services; Ministry of Lands, Agriculture, Fisheries, Water and Rural Development; Zimbabwe

¹⁰ Andrew Chamisa, Director, Department of Livestock Research, Ministry of Lands, Agriculture, Fisheries, Water and Rural Development; Zimbabwe

¹¹ Irene Chakoma, Research Associate, International Livestock Research Institute (ILRI), Zimbabwe.

¹² Sikhulile Siziba, Livestock Researcher specialising in Veterinary Parasitology.

¹³ Soul Washaya, Lecturer and Researcher in the Department of Livestock, Wildlife & Fisheries, Great Zimbabwe University

¹⁴ Xavier Zhakata is a researcher affiliated at Matopos Research Institute. His work focuses on livestock reproduction systems. He focuses mainly on cattle production and reproductive efficiency.

¹⁵ Professor Never Assan is an authority on Sustainable Livestock Production Systems at the Zimbabwe Open University. He interested in sustainable livestock farming, gender equity concerns, climate change effects, and their collective influence on food security and the livelihoods of small-scale farmers.

technology dissemination are also needed to improve farmers' awareness of fundamental aspects of AI and synchronization protocols.

Keywords: Artificial insemination technology; Smallholder farming systems; Cattle Farmers perceptions; Adoption determinants; Beitbridge, Zimbabwe

1.0 Introduction

In Zimbabwe, the agricultural sector has been demonstrated to be the foundation of the economy, with livestock contributing significantly to the country's economic output. Cattle account for 35% to 38% of the Gross Domestic Product contributed by the agricultural sector (Food and Agriculture Organization, 2020). Cattle serve various social and economic functions in communal areas, underscoring their importance in agricultural production and livelihood systems (Mavedzenge et al., 2006). These functions include income generation, wealth storage, utilization as draught animals, meat and milk production, and manure for fuel and fertilizer (Ndebele et al., 2007). Most households in communal areas in semi-arid southern Zimbabwe depend on livestock farming for subsistence. Musemwa et al., (2012) emphasized that reliance on livestock farming is influenced by unreliable rainfall resulting in recurrent droughts and water shortages; consequently, livestock production is more feasible for communities focusing on mitigating food shortages, achieving nutritional and economic security, and improving economic growth. However, cattle productivity in these farming areas is low because of numerous factors, including poor or nonadoption of optimal farming systems and promoted technologies. This challenge may stem from human perceptions rather than a lack of technological advancement.

The poor genetic potential of indigenous breeds has contributed to low livestock productivity (Fillipo, 2015). Hence, various biotechnologies, such as artificial insemination (AI), which is defined as the introduction of semen and viable sperm into the female reproductive tract via artificial means (Schook et al., 2017), have been promoted to improve the genetic composition of communal cattle. For livestock improvement in developing countries, technologies, such as AI, must be comprehended and effectively transferred to farmers (Shehu, 2010). Consequently, the Division of Research, through Matopos Research Institute, has been promoting artificial cattle insemination in communal areas, artificially inseminating 300 animals in

Mwenezi (2018) under the CROPS project, 1197 cattle in Beitbridge (2018, 2019, 2020) under the Zimbabwe Resilience Building Fund - Program for Growth and Resilience (ZRBF-PROGRESS) project, and 460 in Matobo and Insiza districts (2021) under the Zimbabwe Agriculture Knowledge Innovation System (ZAKIS) project, which is one of the Zimbabwe Agricultural Growth Programmes (ZAGP), with a calving rate range of 40–45% from single cow insemination services. These programs aim to propagate superior genetics from improved indigenous breeds and enhance the participating farmers' understanding of AI technology.

In areas where AI has been implemented, there has been an improvement in calving rates, with–25-30% (Institute of Rural Technology, 2010) improvement observed among smallholder farmers in semi-arid areas and 65-70% in commercial farms (Washaya et al., 2019), as well as a reduction in the calving period and an increase in calf weight (Mushonga et al., 2009). With improved herd performance and productivity that can be realized in communal areas due to rapid genetic gain from AI, the rural economy would be sustained by high cattle off-take rates, thereby reducing poverty and improving household food security (Mugwabana 2018). Communal cattle farmers in rural areas can adopt and utilize these technologies to address the shortage of bulls, reduce the transmission of venereal diseases, minimize the costs associated with acquiring and managing high-quality bulls, and improve calving rates (Kubkuhoma, 2018).

Despite these well-documented advantages, there is generally a low rate of Al technology adoption in rural communities, with an Al coverage of 3.25% recorded in Zimbabwe (Mlemba, 2011). The rate at which a particular technology is adopted in a community depends on how the technology is perceived (Ntshangase et al., 2018), the socio-economic attributes of the intended beneficiaries, their level of education, and linkage with extension structures (Adesina and Baidu-Forson, 1995). According to Tatlidil et al. (2009), technologies that are perceived negatively will have a low-to-zero adoption level. Ntshangase et al. (2018) highlighted that farmers have numerous reasons for adopting new farming technologies; some may be rational in their behaviour, and their perceptions may be influenced by the information available to them, community demographics, farm enterprises, cultural practices, and alternatives to the technology available to them. Therefore, there is a need to conduct studies to generate empirical data and insights on how communal farmers and stakeholders

perceive potential challenges and benefits that could be derived from adopting AI in communal cattle production systems as a cost-effective method of breed improvement. This information is critical for designing improved models and implementing methods for such technologies for better acceptance by farmers. This study was conducted to determine farmers' perceptions and demographic dynamics of cattle artificial insemination technology under communal farming systems in Zimbabwe.

2.0 Materials and Methods

2.1 Data Collection Site

The study was conducted in LIPS-ZIM participating wards in the Beitbridge district, located in Matabeleland, South province of Zimbabwe. The district was selected primarily because of the availability of farmers whose cattle were artificially inseminated by the Matopos Research Institute under the Zimbabwe Resilience Building Fund Program for Growth and Resilience (ZRBF-PROGRESS) project, the abundance of cattle produced under communal systems, and the representation of many rural parts of semi-arid Zimbabwe. Beitbridge is characterized by communal livestock production, where 1197 animals were inseminated between 2018, 2019, and 2020 in the communal areas. Mean annual temperatures in Matabeleland South Province range between 25 °C in summer months and 27.5°C during winter months. Rainfall in the province ranges from 300 to 600 mm per annum, with an average of 332 mm per annum (Matsa and Dzawanda, 2019). Vegetation varies from savannah in deep fertile soils to shrub savannah in shallower soils.

2.2 Data Collection Sampling Procedure

Farmers who participated in the ZRBF-PROGRESS funded cattle artificial inseminations conducted by Matopos Research Institute were selected as lead Al farmers for the survey. Lead Al farmers and farmers who were trained as community-based inseminators were selected with the assistance of agricultural extension and veterinary personnel involved in the ZRBF-PROGRESS Al program, as well as project implementation coordinators in the respective wards. The lead farmers in this study represent the farmers described by Kundhlande et al. (2014) as experienced model farmers who are utilized in demonstrating improved farming systems. Only three

targeted wards were employed because it has been observed that when in-depth interviews are to be conducted with a targeted group of respondents, the sample size will have a minimal impact on the outcome of the studies (Crouch & McKenzie, 2006; Marshall et al., 2013; Small, 2009)

2.3 Data Acquisition Strategy

A semi-structured questionnaire comprising closed- and open-ended questions was developed and validated prior to its administration to the targeted group of farmers who had previously participated in cattle insemination activities under ZRBF-PROGRESS, encompassing 80 households. Data collection was conducted by coinvestigators and ward-based government extension officers (Agricultural and Rural Development Advisory Services) in wards 3, 5, and 11, utilizing digital means through an application called KOBO (see Appendix 1 for the questionnaire).

2.4 Inferential Analysis Approach

The data generated from the questionnaire were analysed using the Statistical Package for Social Sciences version 22 (Armonk, NY, USA). Descriptive statistics were used to determine frequencies, means, and ranges. The reliability of the data was assessed using Cronbach's α based on standardized items (0.952). A chi-squared (X2) test with a 95% level of significance was used to measure the statistical association between the demographic characteristics of the participants and their perceptions of cattle artificial insemination.

3.0 Results and Discussions

Table 1 presents the demographic characteristics of the cattle farmers and their association with their knowledge of artificial insemination. This study assessed 80 farmers in Beitbridge regarding their understanding and perception of cattle artificial insemination. The majority of the respondents (78.85%) were male, with females comprising 21.25% of the sample. The household head gender distribution consisted of 67.5% males and 32.5% females. All participants reported awareness of the government-led ZRBF-PROGRESS implementing an artificial insemination program in their district. The predominant breeding method was uncontrolled natural bull mating, with artificial insemination considered in government-sponsored programs.

Gororo et al. (2017) and Nyamushamba et al. (2017) reported that the primary hindrance to breed improvement in the communal areas of Zimbabwe was uncontrolled breeding, which resulted in high levels of inbreeding depression and poor cattle reproductive performance (Tada et al., 2013). Isolating breeding cows may present a challenge, as 80% of the respondents indicated insufficient grazing in their communities (Figure 1). The majority of farmers indicated greater familiarity with natural mating than artificial insemination, having been exposed to AI for the first time between 2017 and 2020 (64%), despite varying years of farming experience (Table 3).

Table 1. Participant farmers' demographic profile, farming enterprise and experience and association with AI related activities

		Freq	breedin	ıg	Did	you	Do	you	Do you	ı keep
		uenc	method	I	have any		prepare cows		Farm Breeding	
		y (%)	preference if AI		say in Al		for Al		Records	
		N=80	is available		semen					
					selection					
			Bulls	AI &	Ye	No	Yes	No	Yes	No
				Bulls	s					
Gend	Male	63(78	23(36.	40(63.	44(19(3	23(36.	40(6	61(96.	2(3.2
er of		.8)	5)	5)	69.	0.2)	5)	3.5)	8))
respo					8)					
ndent	femal	17(21	5(29.4	12(70.	14(3(17.	4(23.5	13(7	16(94.	1(5.9
	е	.3))	6)	82.	7))	6.5)	1))
					4)					
	Р		0.771	l	0.374	1	0.395	1	0.517	<u>I</u>
	Value									
Age of	<25	4(5)	3(75)	1(25)	4(1	0(0)	1(25)	3(75)	3(75)	1(25)
the	years				00)					
househ	26-35	1(1.3	1(100	0(0)	1(1	0(0)	0(0)	1(10	1(100)	0(0)
old	years))		00)			0)		
head	36-	12(15	5(41.	7(58.	10(2(16.	7(58.3	5(41.	12(100	0(0)
	45yea)	7)	3)	83.	7))	7))	
	rs				3)					
	46-65	42(52	12(28	30(71	28(14(3	28(66.	14(3	40(95.	2(4.8
	years	.5)	.6)	.4)	66.	3.3)	7)	3.3)	2))
					7)					
	>	21(26	7(33.	14(66	15(6(28.	17(81.	4(19.	21(100	0(0)
	66yea	.3)	3)	.7)	71.	6)	0)	1))	
	rs				4)					
	Р		0.227	<u>l</u>	0.504	1	0.117	<u> </u>	0.168	<u>I</u>
	Value									
		<u> </u>	I .		1		L		L	

Educati	Primar	61(76	19(31	42(68	43(18(2	21(34.	40(6	2(3.3)	59(9
on	y/No	.3)	.2)	.9)	70.	9.5)	4)	5.6)		6.7)
Levels	Educa				5)					
of	tion									
househ	Secon	13(16	5(38.	8(61.	9(6	4(30.	1(7.7)	12(9	0 (0)	13(1
old	dary	.3)	5)	5)	9.2	8)		2.3)		00)
head)					
	Tertiar	6	4(66.	2(33.	6(1	0(0)	5(83.3	1(16.	1(16.7)	5(83.
	У	(7.5)	7)	3)	00))	7)		3)
	Р		0.211		0.291		0.005		0.190	
	Value									
							•			
Occupa	Off-	12	4(33.	8(66.	8(6	4(33.	2(16.7	10(8	11(91.	1(8.3
tion of	farm	(15)	3)	7)	6.7	3))	3.3)	7))
the	self-)					
househ	emplo									
old	yment									
head:	Forma	10(12	4(40)	6(60)	7(7	3(30)	5(50)	5(50)	10(100	0(0)
	I	.5)			0))	
	emplo									
	yment									
	Farmi	58	20(34	38(65	43(15(2	20(34.	38(6	56(96.	2(3.5
	ng	(72.5	.5)	.5)	74.	5.9)	5)	5.5)	6))
)			1)					
	Р		0.936		0.855	5	0.251		0.576	
	Value									
Which	Livest	5(6.3	0 (0)	5	5(1	0(0)	3(60)	2(40)	5(100)	0(0)
farming	ock)		(100)	00)					
enterpri	only									
ses do	Crop-	75(93	28(37.	47(62.	53(22(2	24(32	51(6	72(96)	3(4)
you	livesto	.8)	3)	7)	70.	9.3))	8)		
have on	ck				7)					
your	Р		0.094		0.155	5	0.200		0.649	
farm	Value	Ì	1		1		1			

The Fountain – Journal of Interdisciplinary Studies, Vol.9, Issue 1, June-July 2025

Numbe	10	9(11.3	4(44	5(55	8(8	1(11.	4(44.4	5(55.	8(88.9)	1(11.
r of	years)	.4)	.6)	8.9)	1))	6)		1)
years	11-20	27	8(29.6	19(70.	20(7(25.	6(22.2	21(77	27(100)	0(0)
practici	years	(33.8))	4)	74.	9))	.8)		
ng					1)					
farming	21-30	20 (25)	6(30)	14(70)	13(7(35)	9(45)	11(55	18(90)	2(10)
	yes				65))		
	+30	24(30)		14(58.	17(7(29.	8(33.3	16(6.	24(100)	0(0)
	years		10(41.	3)	70.	2))	7)		
			7)		8)					
	Р		0.709		0.894		0.605	•	0.138	
	Value									

Nevertheless, most households expressed a preference for both breeding methods if available. No significant association (P > 0.05) was observed between sex and breeding method preference across all age groups. Cattle farmers aged 46–65 years constituted the majority of participants (52.5%), followed by those aged 66 years and above (26.3%). Notably, the economically active age group of 26-35 years demonstrated lower involvement in farming (1.3%) within the sample size. However, knowledge of cattle artificial insemination technology was not significantly associated (P > 0.05) with participant age across all parameters measured.

The educational level of most participants (76%) was at the primary level or below, with 16% and 8% of participants having reached the secondary and tertiary educational levels, respectively (Table 2). Educational level was positively correlated with the perceived level of satisfaction with AI, as 50% of respondents with tertiary education expressed satisfaction with AI, compared to 46% and 45% of farmers who had secondary and primary education, respectively. However, the differences were not statistically significant.

Significant differences were observed between the level of education and farmer cow preparation for AI (P <0.05). Similar observations have been noted in other regions where it has been reported that the educational status of households is directly related to the perception of farmers in estrus synchronization, with illiterate farmers not preparing cows for artificial insemination in Ethiopia compared to educated farmers (Destalem et al., 2015). There was also no statistically significant association (p>0.05)

between years of farming experience and knowledge of cattle artificial insemination. This may have been influenced by the fact that most participants (64%) indicated that they had no exposure to Al before 2017, when the ZRBF program was introduced in the district, regardless of years of experience (Table 3). This observation aligns with reports from earlier work by Gororo et al. (2017), who revealed that 40% of farmers in communal areas have never heard of the term assisted reproduction technologies (ART), with only 1% awareness of estrus synchronization for Al. Therefore, it is critical to continuously provide extension services to smallholder cattle farmers on the advantages of artificial insemination, detection of estrus, estrus synchronization for timed artificial insemination, potential problems associated with breeding, and good animal management practices. The findings corroborate the recommendations by Abebe and Alemayehu 2021, who suggested that knowledge and skill-based training should be provided regularly to both smallholder cattle producers and Al technicians, as it may enhance the technology's effectiveness and the attitudes of communal farmers towards cattle artificial insemination technology.

Table 2: Farmer education level in relation to satisfaction on Al

			Educational head	level of th	Total	
			Primary	Secondary	Tertiary	
Are you satisfied with the overall Al		Yes	28 (45)	6 (46)	3 (50)	37 (46)
service	<i>P</i> =0.982		33 (55)	7(52)	3 (50)	43 (54)
Total			61 (76)	13 (16)	6 (8)	80 (100)

Table 3: Relationship between years practicing farming versus when farm first heard about Al

		When did yo	Total		
		insemination			
		2017-2020	2010-2016	<2010	
Number of years	10	6	2	1	9 (11)
practicing farming	years				
P =0.491	11-20	15	5	7	27(34)
	years				
	21-30	13	1	6	20 (25)
	yes				
	+30	17	1	6	24 (30)
	years				
Total		51(64)	9(11)	20 (25)	80 (100)

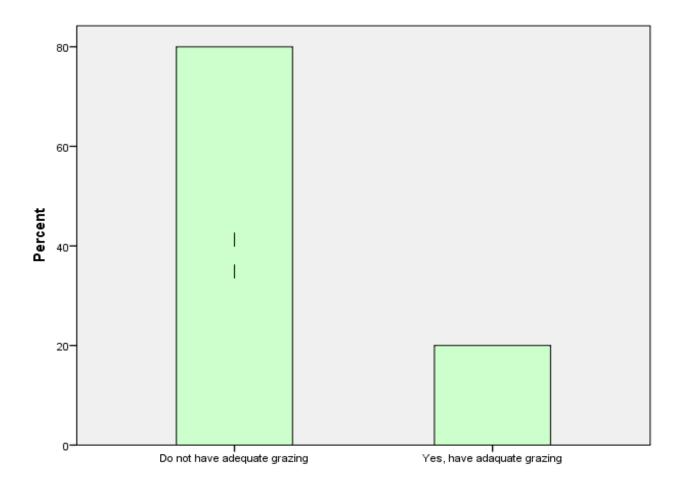


Figure 1: Availability of adequate grazing

Table 4: Farmer perception of AI technician's cooperation, access to AI service, satisfaction with AI service

		Ward 3	Ward 5	Ward 11	Total
Al technician	Cooperative	22(27.4)	23(28.8)	34	79 (98.7)
cooperation				(42.5)	
P=0.991	Non-cooperative	0 (0)	0 (0)	1 (1.3)	1 (1.3)
	Total	22 (27.4)	23 (28.8)	35	80 (100)
				(43.8)	
		<u> </u>		I	L
Access to Al service	Have Access	1 (1.3)	0 (0)	1 (1.3)	2 (2.5)
post ZRBF	Do not Have	21 (26.3)	23 (28.8)	34	78 (97.5)
P = 0.611	Access			(42.5)	
	Total	22 (27.4)	23 (28.8)	35	80 (100)
				(28.8)	
			•		
Satisfaction	Satisfied	11 (13.8)	14 (17.5)	11	37 (46.3)
				(13.8)	
P = 0.128	Not Satisfied	11 (13.8)	9 (11.3)	23	43 (53.7)
				(28.8)	
	Total	22 (27.4)	23 (28.8)	35	80 (100)
				(28.8)	
Do you have all the	Yes	6 (7.5)	8 (10)	8(10)	22 (27.5)
information you need	No	16 (20)	15 (18.7)	27	58 (72.5)
on Al				(33.7)	
P = 0.609	Total	22	23	35	80

The survey revealed that 79 (98.7%) farmers perceived the AI service technicians as cooperative across all three wards, with no significant association (P ≥0.05) observed between ward and perception of farmer AI technicians (Table 4). However, almost all respondents did not practice AI outside government-sponsored initiatives, with 97.5%

of the farmers indicating that there are no cattle artificial insemination practitioners in the district, and 53.7% of the farmers reported dissatisfaction with the service due to lack of access to critical information on AI (72.5%). This sentiment was consistent across all wards, with no significant differences observed (P > 0.05). The results of the current study corroborate the findings of Juneyid et al. (2017), who reported that the majority of communal farmers in Ethiopia have a negative perception of using AI services because of a lack of locally based artificial insemination technicians and limited inputs. These findings indicate that farmers in the Beitbridge communal area are unable to access AI services when needed, particularly during the optimal insemination window for animals in estrus, to improve their animals' genetic potential and productivity. Only 22 of the 80 farmers indicated that they possessed comprehensive knowledge of AI across all wards, with 75.5% lacking full understanding of AI. These observations align with the findings of Gororo et al. (2017), who noted that only 1% of farmers had knowledge of synchronization, although some (59%) were aware of artificial insemination technology.

4.0 Conclusions and Recommendations

This study examined farmers' perceptions and determinants of artificial insemination (AI) technology in communal farming systems in Beitbridge, Zimbabwe. Factors such as demographic profiles, farming experience, education, and satisfaction with AI services were investigated. Findings indicate that education levels may influence satisfaction with AI services and that farming experience correlates with awareness of AI technology. The study also examined the availability of grazing, perceptions of AI technician cooperation, access to AI services, and overall satisfaction. Communal farmers in Beitbridge primarily use natural mating, with AI and estrus synchronization only during government or NGO-sponsored programs. Low AI adoption is due to insufficient awareness and lack of structured breeding programs, leading to uncontrolled mating in communal grazing lands.

Respondents noted challenges in implementing ARTs like estrous synchronization and AI due to the lack of local inseminators, relying on government programs, and insufficient information on insemination services. This inaccessibility to reproductive technology practitioners has limited AI and synchronization use in communal areas. The study recommends collaboration among cattle stakeholders to address

challenges in optimizing cattle productivity through ART. The ART project should ensure continuity beyond government/NGO periods by training government workers and lead farmers as inseminators and decentralizing service providers. Community-led sustainability frameworks should support government efforts in rural cattle farming.

Alternative methods for technology dissemination are needed as many communal farmers lack awareness of Al fundamentals, such as breeding equations and synchronization protocols. These results highlight the complex interplay of factors affecting Al adoption and perception in communal farming. The outcomes may improve Al implementation and acceptance in similar contexts. Further research is recommended to explore additional factors influencing Al adoption and develop strategies for enhancing Al program effectiveness in communal farming systems. The findings can guide policymakers and agricultural extension services in better supporting farmers in adopting and benefiting from Al.

STUDY HIGHLIGHTS

- ♣ Farmers in communal areas overwhelmingly prefer natural mating over artificial insemination for cattle breeding.
- ♣ Government and NGO-sponsored programs are the primary contexts for artificial insemination usage.
- ♣ Artificial Insemination adoption is constrained by the scarcity of locally-based insemination services.
- ♣ Limited knowledge of assisted reproductive technologies (ARTs) among farmers poses a significant challenge.
- ♣ In communal grazing lands, unmanaged breeding practices are prevalent, with cows frequently mating with unknown bulls.
- ♣ The shortage of structured breeding initiatives in communal areas impedes the adoption and effectiveness of Artificial Insemination.
- ♣ ARTs require a collaborative stakeholder approach to boost cattle productivity in smallholder farming sector.

Acknowledgments:

We gratefully acknowledge the support of the LIPS-ZIM project and the cooperation of Beitbridge livestock farmers who took part in the survey.

Funding Statement:

The study was financial supported by the LIPS-ZIM project

Conflict of Interest declaration:

The authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest in the subject matter or materials discussed in this manuscript.

Author Contributions:

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SS; SW; XZ; AC; and ICJ. The first draft of the manuscript was written by BT; GT; TDM; and GS and all authors commented on subsequent versions of the manuscript. Review & editing to the manuscript were guided by NA. All authors read and approved the final paper.

References

- Abebe B and Alemayehu M (2021) Challenges and Opportunities on Estrus Synchronization and Mass Artificial Insemination in Dairy Cows for Smallholders in Ethiopia. Hindawi International Journal of Zoology. Volume 2021, Article ID 9914095, 6 pages. https://doi.org/10.1155/2021/9914095
- Adesina, A.A.; Baidu-Forson, (1995). J. Farmers' perceptions and adoption of new agricultural technology: Evidencefrom analysis in Burkina Faso and Guinea, West Africa. Agric. Econ. 13, 1–9.
- Assan N. (2012) Genetic improvement and utilization of indigenous cattle breeds for beef production in Zimbabwe: past, present and future prospects. Scientific Journal of Agricultural Science. 1:1-13

- Destalem G., Berhanu B. Azage T. (2015) Assessment of Breeding Practice of Dairy Cattle in Central Zone of Tigray, Northern Ethiopia Journal of Biology, Agriculture and Healthcare Vol.5, No.23, www.iiste.org
- Crouch M, McKenzie H (2006). The logic of small samples in interview based qualitative research. Social Science Information 45(4):483-499
- FAO (Food and Agriculture Organization). (2020). Zimbabwe at glance. Online. Available at http://www.fao.org/zimbabwe/fao-in-zimbabwe/zimbabwe-at-a-glance/en/.
- Gororo E, Makuza S. M, Chatiza F P, Gwatibaya S, Gahadzikwa P and Chidzwondo F. (2017). The potential of reproductive technologies in breeding smallholder cattle populations in Zimbabwe. International Journal of Livestock Production. https://doi.org/10.5897/IJLP2017.0395
- Juneyid R, A. Hassen, J. Kemal, and K. Welay, (2017) Assessment on problems associated with artificial insemination service in dairy cattle in Tullo district, West Hararghe, Ethiopia," Ethiopian Veterinary Journal, vol. 21, no. 2, pp. 62–74.
- IBM (2022). IBM Statistics Version 20. New York, USA: IBM Inc
- Institute for Rural Technologies (2010) Establishing Community based artificial insemination programmes and innovative knowledge dissemination to enhance development of commercial smallholder beef and dairy herds in Matabeleland Region.
- Kubkomawa, H.I. (2018) The Use of artificial insemination technology in improving milk, beef and reproductive efficiency in tropical Africa: A review, Journal of Dairy and Vet Science, Vol 5 (2).
- Kundhlande G, Franzel S, Simpson B, Gausi E (2014). Farmer-tofarmer extension approach in Malawi: A survey of organizations using the approach ICRAF Working Paper No.183. Nairobi, World Agroforestry Centre. DOI: http://dx.doi.org/10.5716/WP14384.PDF
- Mugwabana, J. T., Nephawe, A.K., Muchenje, V., Nendambale, T.L. and Nengovhela, B. (2018) The effect of assisted reproductive technologies on cow productivity under communal land emerging farming systems of South Africa, Journal of Applied animal Research, Vol 46 (1).

- Musemwa, L., Muchenje V., Mushunje A. and Zhou L. (2012) The Impact of Climate Change on Livestock production amongst Resource- poor Farmers on Third World Countries: A Review, Asian Journal of Agriculture and Rural Development, Vol 2 (4), Pp 621-631.
- Mushonga, B., Dusabe, P.J., Kadiwa, E., Bhebhe, E., Habarugira, G. and Samkange,
 A. (2017) Artificial insemination in Nyangatare District: Level of adoption and factors determining the adoption, Alexandria Journal of Veterinary Science, Vol 55 (1), Pp1-7.
- Marshall B, Cardon P, Poddar A, Fontenot R (2013). Does sample size matter in qualititative research? A review of qualitative interviews in IS research. Journal of Computer Information Systems 54(1):1-22
- Matsa M and Dzawanda B (2019) Beitbridge Minority Farmer Communities and Climate Change: Prospects for Sustainability Climate Change and Agriculture DOI: 10.5772/intechopen.83816
- Ndebele J. J, Muchenje V, Mapiye C, Chimonyo M, Musemwa L and Ndlovu T (2007)

 Cattle breeding management practices in the Gwayi smallholder farming area of South-Western Zimbabwe. Livestock Research for Rural Development.

 Volume 19, Article #183
- Ntshangase NL., Muroyiwa, Sibanda M (2018) Farmers' Perceptions and Factors Influencing the Adoption of No-Till Conservation Agriculture by Small-Scale Farmers in Zashuke, waZulu-Natal Province. Sustainability 10, 555; doi:10.3390/su10020555 www.mdpi.com/journal/sustainability
- Nyamushamba G, Mapiye C, Tada O, Halimani T, Muchenje V (2017). Conservation of indigenous cattle genetic resources in Southern Africa's smallholder areas: turning threats into opportunities-A review. Asian-Australas J. Anim. Sci. 30(5):1-19
- Schook, M.R., Steinchei, P. L., Meradnate, V. R.G., Lamb, G.C, Neville, B.W. and Dahlen, C.R. (2017) Effects of breeding system of origin: Natural service or artificial insemination on growth, attainment of puberty and pregnancy rates in crossbred beef heifers, Beef Report, North Dakota, Pp 46-48.

- Shehu, B.M., Rekwo, P.I., Kezi, D.M., Bidoli T.D. and Oyedokani, A. O. (2010) Challenges to farmers' participation in artificial insemination biotechnology in Nigeria: An overview.
- Tatlidil FF, Boz Í, Tatlidil H (2009). Farmers, perception of sustainable agriculture and its determinants: a case study in Kahramanmaras province of Turkey Environment, Development and Sustainability 11(6):1091-1106.
- Washaya S, Tavirimirwa B, Dube S, Sisito G, Tambo G, Ncube S & Zhakata X. (2019)
 Reproductive efficiency in naturally serviced and artificially inseminated beef cows. Tropical Animal Health and Production Trop Anim Health Prod DOI 10.1007/s11250-019-01889-z